10道Redis常见面试题速通

news/2025/2/26 13:11:23

引言

本系列聚焦频率最高的面试题,用最简洁的文字表达中心思想,速通面试

1、Redis持久化数据和缓存怎么做扩容?

如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。

2、分布式Redis是前期做还是后期规模上来了再做好?为什么?

既然Redis是如此的轻量(单实例只使用1M内存),为防止以后的扩容,最好的办法就是一开始就启动较多实例。即便你只有一台服务器,你也可以一开始就让Redis以分布式的方式运行,使用分区,在同一台服务器上启动多个实例。一开始就多设置几个Redis实例,例如32或者64个实例,对大多数用户来说这操作起来可能比较麻烦,但是从长久来看做这点牺牲是值得的。这样的话,当你的数据不断增长,需要更多的Redis服务器时,你需要做的就是仅仅将Redis实例从一台服务迁移到另外一台服务器而已(而不用考虑重新分区的问题)。一旦你添加了另一台服务器,你需要将你一半的Redis实例从第一台机器迁移到第二台机器。

3、Twemproxy是什么?

Twemproxy是Twitter维护的(缓存)代理系统,代理Memcached的ASCII协议和Redis协议。它是单线程程序,使用c语言编写,运行起来非常快。它是采用Apache 2.0 license的开源软件。 Twemproxy支持自动分区,如果其代理的其中一个Redis节点不可用时,会自动将该节点排除(这将改变原来的keys-instances的映射关系,所以你应该仅在把Redis当缓存时使用Twemproxy)。 Twemproxy本身不存在单点问题,因为你可以启动多个Twemproxy实例,然后让你的客户端去连接任意一个Twemproxy实例。 Twemproxy是Redis客户端和服务器端的一个中间层,由它来处理分区功能应该不算复杂,并且应该算比较可靠的。

4、支持一致性哈希的客户端有哪些?

Redis-rb、Predis等。

5、Redis与其他key-value存储有什么不同?

Redis有着更为复杂的数据结构并且提供对他们的原子性操作,这是一个不同于其他数据库的进化路径。Redis的数据类型都是基于基本数据结构的同时对程序员透明,无需进行额外的抽象。Redis运行在内存中但是可以持久化到磁盘,所以在对不同数据集进行高速读写时需要权衡内存,应为数据量不能大于硬件内存。在内存数据库方面的另一个优点是, 相比在磁盘上相同的复杂的数据结构,在内存中操作起来非常简单,这样Redis可以做很多内部复杂性很强的事情。 同时,在磁盘格式方面他们是紧凑的以追加的方式产生的,因为他们并不需要进行随机访问。

6、Redis的内存占用情况怎么样?

给你举个例子: 100万个键值对(键是0到999999值是字符串“hello world”)在我的32位的Mac笔记本上 用了100MB。同样的数据放到一个key里只需要16MB, 这是因为键值有一个很大的开销。 在Memcached上执行也是类似的结果,但是相对Redis的开销要小一点点,因为Redis会记录类型信息引用计数等等。当然,大键值对时两者的比例要好很多。64位的系统比32位的需要更多的内存开销,尤其是键值对都较小时,这是因为64位的系统里指针占用了8个字节。 但是,当然,64位系统支持更大的内存,所以为了运行大型的Redis服务器或多或少的需要使用64位的系统。

7、都有哪些办法可以降低Redis的内存使用情况呢?

如果你使用的是32位的Redis实例,可以好好利用Hash,list,sorted set,set等集合类型数据,因为通常情况下很多小的Key-Value可以用更紧凑的方式存放到一起。

##43、查看Redis使用情况及状态信息用什么命令?info44、Redis的内存用完了会发生什么? 如果达到设置的上限,Redis的写命令会返回错误信息(但是读命令还可以正常返回。)或者你可以将Redis当缓存来使用配置淘汰机制,当Redis达到内存上限时会冲刷掉旧的内容。## 45、Redis是单线程的,如何提高多核CPU的利用率? 可以在同一个服务器部署多个Redis的实例,并把他们当作不同的服务器来使用,在某些时候,无论如何一个服务器是不够的, 所以,如果你想使用多个CPU,你可以考虑一下分片(shard)。

8、一个Redis实例最多能存放多少的keys?

List、Set、Sorted Set他们最多能存放多少元素?理论上Redis可以处理多达232的keys,并且在实际中进行了测试,每个实例至少存放了2亿5千万的keys。我们正在测试一些较大的值。任何list、set、和sorted set都可以放232个元素。换句话说,Redis的存储极限是系统中的可用内存值。

9、Redis常见性能问题和解决方案?

  • (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件
  • (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
  • (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
  • (4) 尽量避免在压力很大的主库上增加从库
  • (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。

10、Redis提供了哪几种持久化方式?

RDB持久化方式能够在指定的时间间隔能对你的数据进行快照存储.AOF持久化方式记录每次对服务器写的操作,当服务器重启的时候会重新执行这些命令来恢复原始的数据,AOF命令以redis协议追加保存每次写的操作到文件末尾.Redis还能对AOF文件进行后台重写,使得AOF文件的体积不至于过大.如果你只希望你的数据在服务器运行的时候存在,你也可以不使用任何持久化方式.你也可以同时开启两种持久化方式, 在这种情况下, 当redis重启的时候会优先载入AOF文件来恢复原始的数据,因为在通常情况下AOF文件保存的数据集要比RDB文件保存的数据集要完整.最重要的事情是了解RDB和AOF持久化方式的不同,让我们以RDB持久化方式开始。


http://www.niftyadmin.cn/n/5868739.html

相关文章

MFC笔记:本专栏课件

专栏导航 上一篇&#xff1a;在VS2019里面&#xff0c;调整代码字体大小 回到目录 下一篇&#xff1a;无 本节前言 在之前的讲解里面&#xff0c;我讲解了 Visual Studio 软件的一些个基础操作步骤。从本节开始&#xff0c;我们进入预备章。 本节内容&#xff0c;属于是 …

谈谈 ES 6.8 到 7.10 的功能变迁(4)- 聚合功能篇

这一篇我们继续了解 ES 7.10 相较于 ES 6.8 新增的聚合方法。 Rare Terms 聚合 功能说明 用于聚合查询出字段中的稀有项。ES 常见的统计方法是使用 term 查询的正向排序&#xff0c;但是在大数据量和高基数的数据分布场景下会出现 unbounded 错误。Rare 聚合弥补了这个场景的…

东信营销科技巨额补贴仍由盈转亏:毛利率大幅下滑,现金流告急

《港湾商业观察》施子夫 近期&#xff0c;东信营销科技有限公司&#xff08;以下简称&#xff0c;东信营销科技&#xff09;递表港交所&#xff0c;联席保荐机构为海通国际和中银国际。 东信营销科技的国内运营主体为深圳市东信时代信息技术有限公司。尽管期内收入规模有所提…

Centos主机基础设置和网络网卡设置,安装ansible、docker(修改ip、uuid、主机名、关闭防火墙selinux和networkmanager)

克隆主机 启动主机 查看ip地址 修改ip地址和UUID更换UUID uuidgen生成UUID 修改ip地址 sed -i ‘/IPADDR/cIPADDR10.1.1.10’ /etc/sysconfig/network-scripts/ifcfg-ens33 也可以直接将58替换成10 sed -i ‘/IPADDR/s/58/10/’ /etc/sysconfig/network-scripts/ifcfg-en…

基于YOLO11深度学习的苹果叶片病害检测识别系统【python源码+Pyqt5界面+数据集+训练代码】

《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…

在llm和agent的背景下,有什么比较好的研究方向或者能解决现在的实际的社会问题

在llm和agent的背景下,有什么比较好的研究方向或者能解决现在的实际的社会问题 在LLM(大语言模型)与Agent(智能体)的融合背景下,研究方向和社会应用正呈现出多元化趋势。 一、技术研究方向 多模态智能体(Multi-modal Agents) 方向:将LLM与视觉、语音、触觉等多模态数…

计算机视觉(opencv-python)入门之图像的读取,显示,与保存

在计算机视觉领域&#xff0c;Python的cv2库是一个不可或缺的工具&#xff0c;它提供了丰富的图像处理功能。作为OpenCV的Python接口&#xff0c;cv2使得图像处理的实现变得简单而高效。 示例图片 目录 opencv获取方式 图像基本知识 颜色空间 RGB HSV CV2常用图像处理方…

Web自动化之Selenium控制已经打开的浏览器(Chrome,Edge)

在使用selenium进行web自动化或爬虫的时候,经常会面临登录的情况,对于这种情况,我们可以利用Selenium控制已经打开的浏览器&#xff0c;从而避免每次都需要重新打开浏览器并进行登录的繁琐步骤。 目录 说明 启动浏览器 注意 --user-data-dir说明 代码设定 代码 改进代…